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PROPAGATION OF ACOUSTIC SIGNALS IN SOILS

UDC 532.536Yu. A. Berezin1 and L. A. Spodareva2

Propagation of low-amplitude waves in soils is studied within the framework of a hypoplastic model
that describes the nonlinear behavior of grainy media. For one-dimensional disturbances, the original
equations are reduced to a system of nonlinear wave equations. Results of the qualitative analysis
and numerical solution of the problems are presented.

Many grainy materials, sand soils, in particular, are characterized by a nonlinear dependence between strains
and stresses under loading and unloading. To describe their properties, hypoplastic models are used, in which the
stress–strain relation is represented by a nonlinear evolution equation with coefficients depending, in the general
case, on the stress-state parameters and porosity of the medium, and also on constants that characterize material
types and are determined from experiments and calculations [1–4]. The results of studying some regularities of
wave propagation in soils on the basis of such a model can be found in [5–10].

In the present work, the character of evolution of disturbances generated at the boundary of soil occupying
a half-space is studied.

The main attention is paid to low-amplitude waves and small strains of the medium. Here, the effect of
porosity is neglected, and the original system of equations is written in the following form:

ρv̇ = divT ; (1)

Ṫ = −TΩ + ΩT + f1(T )D + f2(T ) tr (TD)D +N(T )‖D‖. (2)

Here ρ is the density of the material, v is the velocity vector, D and Ω are the strain-rate and rotation tensors,
respectively, ‖D‖ =

√
tr (DD) is the strain-rate tensor norm, f1(T ) = C1 tr (T ), f2 = C2/tr (T ), and N(T ) =

(C3TT +C4T
∗T ∗)/tr (TT ), where T ∗ = T − I tr (T )/3 (I is the unit tensor) and C1, . . . , C4 are empirical constants;

the dot above the letter denotes the full derivative in time. The presence of the norm of the strain-rate tensor in
the last term of Eq. (2), including all information on nonlinear properties of the model, does not allow linearization
of system (1), (2) in the case of a homogeneous field of material velocities of the medium (in other words, in the
vicinity of the value ‖D‖ = 0). If the velocity distribution is inhomogeneous, linearization is possible.

Let us consider one-dimensional motions of a hypoplastic medium, assuming that the sought components of
velocities and stresses are functions of one coordinate x and time t. We assume that the strains, material velocities,
and deviations of the stress-tensor components from the undisturbed values are small. In addition, we consider the
initial stress state as homogeneous and v0 = 0. (Hereinafter the superscript 0 corresponds to the initial undisturbed
state of the medium.) Under these assumptions, system (1), (2) is reduced to the folowing system of three nonlinear
second-order equations for the velocity components:
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and the coefficients cp, cs1, cs2, ai (i = 1, . . . , 6), and bi (i = 1, . . . , 3) are determined by the parameters of the initial
state of the medium and the model. If all the coefficients ai and bi are equal to zero, Eqs. (3) are transformed
to linear wave equations independent of each other, which describe the propagation of three elastic waves (one
longitudinal and two transverse) with velocities cp, cs1 and cs2, respectively. Assuming that the main axes of the
undisturbed stress tensor T 0 coincide with the axes x, y, and z, so that T 0

xy = T 0
xz = T 0

yz = 0, we obtain a simpler
model
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The first equation of system (4) is a nonlinear inhomogeneous wave equation that describes the longitudinal
and transverse motions of the medium, and the other two are linear wave equations, as in the elastic case, with
constant but, as a whole, different velocities cs1 and cs2, since c2s1 − c2s2 = (T 0

zz − T 0
yy)/(2ρ). These velocities

coincide only in the case T 0
yy = T 0

zz. Thus, from system (4), it follows that two transverse (shear) waves propagate
independent of each other and of the longitudinal motion, whereas the transverse motions affect the longitudinal
waves. In other words, in hypoplastic media, the transverse waves lead to the excitation of longitudinal waves. If
the initial stress state is isotropic (T 0

xx = T 0
yy = T 0

zz ≡ T0), then the expressions for wave-propagation velocities and
the parameter of nonlinearity are sufficiently simplified: c2p = (3C1 + C2/3)T0/ρ, c2s1 = c2s2 ≡ c2s = 3C1T0/(2ρ), and
b = C3T0/(3ρ).

Then, all equations are written in dimensionless variables with the notation used for dimensional values. As
is shown in [9, 10], in the absence of transverse motions (v = w = 0), the longitudinal disturbances, in which the
material velocity coincides with wave-propagation direction, are described by the equation
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The solution of this equation depends on the sign of the derivative ∂u/∂x. Indeed, if we have ∂u/∂x > 0 everywhere,
then Eq. (5) reduces to the linear wave equation

∂2u

∂t2
− (c2p + b)

∂2u

∂x2
= 0,

and its solutions correspond to the transfer of the initial disturbance in both directions of the x axis, without
changing its form, with a constant velocity c1 = ±

√
c2p + b. If we have ∂u/∂x < 0 everywhere and b < c2p, then eq.

(5) takes the form

∂2u
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∂2u
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and its solutions describe the transfer of the initial disturbances, without changing their form, with a constant
velocity c2 = ±

√
c2p − b. In the hydrostatic case considered, when shear stresses are absent, the parameter b is

positive; therefore, c1 > c2 and the profiles corresponding to the positive values of the velocity gradient propagate
faster than the profiles with the negative values of this gradient.

Note that Eq. (5) apart from longitudinal waves, describes also low-amplitude shear waves in saturated
grainy media [5–7]. The sought function is the transverse velocity v; the coefficients differ from those mentioned
above.
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Fig. 1. Evolution of a single signal (transfer equation) for u0 = 1
(1–3) and u0 = −1 (4–6): curves 1 and 4, 2 and 5, and 3 and 6
refer to x = 0, 0.02, and 0.04, respectively.

If the parameter of nonlinearity b is small as compared to the value of c2p, the following first-order equation
was obtained for waves propagating in the positive direction of the x axis, using approximate factorization of the
wave operator [9]:

∂u

∂t
+ cp

∂u

∂x
+

b

2cp

∣∣∣∂u
∂x

∣∣∣ = 0. (6)

In [9, 10], a numerical solution of Eq. (6) on a dimensionless straight line −∞ < x < ∞ with the initial
spatially localized velocity distribution and zero boundary conditions is presented. It is shown that, since the initial
profile has two branches with different signs of the velocity gradient, they move in the same direction with different
velocities, the fore front moves slower than the rear front. Their interaction leads to a decrease in the disturbance
amplitude in the process of motion, and this disturbance decays completely with time. If Eq. (6) is solved under
the same conditions but with the negative sign of cp, in this case, the fore front of the disturbance moves faster
than the rear front, and the branches with different signs of the velocity gradient move not interacting with each
other; because of this, the disturbance is expanded in the course of time, the amplitude remaining unchanged.

On the basis of the approximate equation (6), we consider the propagation of longitudinal waves in soil
occupying a half-space x > 0. The waves are generated by pulses u(0, t) = f(t) prescribed at the boundary x = 0.
Let a vibrating source generate a single signal

f(t) = u0 exp
[
−
( t− t0

t1

)2 ]
,

where u0 is the amplitude, t0 is the time of reaching the maximum value, and t1 is the duration of the signal.
This pulse leads to the excitation of loading (u > 0) or unloading (u < 0) waves, which depends on the positive
or negative value of u0. Figure 1 shows the dependence of the medium velocity on time at the boundary x = 0
and at two points x1 > 0 and x2 > 0. These curves may be interpreted as a temporal development of signals,
recorded by sensors located in the soil at a certain distance from the source. Curves 1–3 correspond to medium
loading (u0 > 0), where the fore front velocity is smaller than the rear front velocity. The sensors record the signal
of decreasing amplitude with increasing distance from the source, and the signal decays completely at rather large
distances. Curves 4–6 correspond to soil unloading (u0 < 0), the fore front velocity of the signal is higher than the
rear front velocity, the disturbance moves in the medium without decaying, and its duration increases.

We consider the case where the vibrating source generates a sinusoidal signal of a constant amplitude
f(t) = u0 sinωt (ω is the cyclic frequency related to the frequency period as T = 2π/ω). Figure 2 shows the
temporal development of signals recorded by the sensors at the points x1 > 0 and x2 > 0 in the soil. As it follows
from the analysis of Fig. 2, the sinusoidal pulse changes substantially during its propagation. In regions under
loading, the velocity profiles are sharpened, and their amplitude decreases (as in the case of generating a single
loading signal at the soil boundary), whereas the velocity profiles in unloading regions are expanded at an invariable
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Fig. 2. Evolution of a sinusoidal signal (transfer equation) for x = 0.01 (a) and 0.02 (b).

Fig. 3. Evolution of a decaying sinusoidal signal (transfer equation) for t1 = 0.01 (a) and 0.02:
curves 1 and 2 refer to x = 0 and 0.04, respectively.

amplitude (as in the case of a single pulse of rarefaction). Such a change in the pulse form leads to the formation
of a signal of greater duration, corresponding to unloading of the medium.

If the source generates a sinusoidal pulse of finite duration with a decreasing amplitude

f(t) = u0 exp
[
−
( t− t0

t1

)2 ]
sinωt,

the signal form u(x, t) in the course of penetration changes in the following manner. In regions under loading, the
velocities decrease with time, decaying completely at large times; but the velocity profiles are expanded in regions
under unloading, the amplitude remaining unchanged. Moreover, as the pulse amplitude decreases at the boundary,
the maximum values of velocity in the successive regions under unloading are different; as a result, the pulse acquires
a stepwise form at large distances from the source (Fig. 3). The number of steps is equal to the number of regions
under unloading, which is set by the pulse at the boundary. Note that the pulse duration in Fig. 3b is twice as
large as in Fig. 3a.

The first-order equation (6) is obtained using approximate factorization of the wave equation (5). Let us
compare the results of the numerical solution of these equations. Figure 4 shows the temporal developments of the
signal generated by a single pulse at the soil boundary x = 0 at the same points and at the same parameters that
were used in solving the first-order equation. It is seen that the character of the signal is the same as in Fig. 1. In
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Fig. 4 Fig. 5

Fig. 4. Evolution of a single signal (wave equation) for u0 = 1 (1–3) and u0 = −1 (4–6): curves 1 and 4, 2 and 5,
and 3 and 6 refer to x = 0, 0.02, and 0.04, respectively.

Fig. 5. Evolution of a decaying sinusoidal signal (wave equation) for x = 0 (1), 0.04 (2), and 0.08 (3).

the course of penetration into the medium, the signal under loading becomes sharper and its amplitude decreases
(curves 1–3 in Fig. 4); under unloading, the signal duration increases, but the amplitude remains constant (curves
4–6). However, the process of development simulated by the wave equation (5) is slower than that described by
Eq. (6). Besides, in the course of penetration, the signal takes a long “tail” of low amplitude, corresponding to
unloading (u < 0), which is absent in simulating the process by Eq. (6). When the sensor is far from the source, the
signal character indicates a gradual decrease in the loading region size and an increase in the unloading region size.
The sensor located at a large distance from the soil boundary records a long signal corresponding to unloading.

Figure 5 shows the results of the numerical solution of the wave equation (5), when the source at the boundary
generates a sinusoidal signal of decreasing amplitude and, hence, finite duration. All parameters in the calculation
of signal development are identical (see Figs. 3a and 5), which allows us to compare the results obtained by solving
two equations: the wave equation (5) and the transfer equation (6). From the comparison of Eqs. (5) and (6), it is
seen that the character of signal propagation is qualitatively identical: at large distances from the source, the sensor
records a signal corresponding to unloading (u < 0), and the number of steps on the temporal development is equal
to the number of unloading regions, which depends on the pulse character at the boundary x = 0. However, the
process described by the wave equation developes considerably slower than the process simulated by the transfer
equation.

For the numerical solution of Eq. (5), a double-layer explicit scheme [9] was used, in which the derivative on
the coordinate is approximated by the backward difference for the reason of stability, because the coefficient before
the derivative on the coordinate is always positive and equal to either cp + b/(2cp) for ux > 0 or cp − b/(2cp) at
ux < 0 (0 < b < cp). Equation (5) was solved numerically by the scheme used in [10]. Equation (5) is written in
the form of the system of two first-order equations for the velocity and stress

∂T

∂t
= c2p

∂u

∂x
+ b
∣∣∣∂u
∂x

∣∣∣, ∂u

∂t
=
∂T

∂x
,

where T ≡ Txx − T0. For this system, an implicit finite-different scheme is constructed, which is implemented by
successive approximations:

Tn+1,k+1
i = Tni + (c2pδt/δx)[α(∆uni + b|∆uni |) + (1− α)(∆un+1,k

i + b|∆un+1,k
i |)],

un+1,k+1
i = uni + (δt/δx)[α∆Tni + (1− α)∆Tn+1,k

i ].

Here Tni = T (tn, xi), uni = u(tn, xi), ∆Tni = Tni+1 − Tni , ∆uni = uni − uni−1, ∆Tn+1,k
i = Tn+1,k

i+1 − Tn+1,k
i , and

∆un+1,k
i = un+1,k

i − un+1,k
i−1 (k is the iteration number), the parameter α = 1 corresponds to the explicit scheme,
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0 6 α < 1 to the implicit scheme, and δt and δx are the grid steps in time and coordinatem, respectively. The
iterations are conducted until the difference in the values of the sought functions on two successive iterations becomes
smaller than some small number ε.

The calculation results presented in Figs. 1-5 are performed for the following parameters: b = 0.1, cp = 0.5,
t0 = 0.04, α = 0.2, δt = 0.0001, and δx = 0.0002. For the sinusoidal signals (see Figs. 2, 3, and 5), we have ω = 400.
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